
The Cell Cycle Switch Computes
Approximate Majority
Luca Cardelli, Microsoft Research

Joint work with Attila Csikász-Nagy, CoSBi & King’s College London

Aalborg, 2013-08-07

� No survival without computation!
� Finding food

� Avoiding predators

� How do they compute?
� Clearly doing “information processing”

� Based on complex, higher-order interactions
� MAPKKK = MAP Kinase Kinase Kinase =

that which operates on that which operates on
that which operates on protein.

� How ‘sophisticated’ are natural algorithms?

Cells Compute

2

Ultrasensitivity in the mitogen-activated protein cascadecascadecascadecascade, , , , Chi-Ying F. Huang
and James E. Ferrell, Jr., 1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.

Outline
� Analyzing biomolecular networks

� Try do understand the function of a network

� But also try to understand its structure, and what determines it

� The Cell-Cycle Switches
� Some of the best studied molecular networks

� Important because of their fundamental function (cell division)
and the stability of the network across evolution

� We ask:
� What does the cell cycles switch compute?

� How does it compute it?

3

� This network is universal in all Eukaryotes [P. Nurse]
� I.e., the network at the core of cell division is the same from yeast to us

� Not the components of the network, nor the rates

� The function is very well-studied. But why this structure?

� I.e., why this algorithm?

xy

The Cell Cycle Switch

4

Double positive feedback on x
Double negative feedback on x
No feedback on y
What on earth … ???

How to Build a Good Switch
� What is a “good” switch?

� We need first a bistable system: one that has two distinct and stable states.
I.e., given any initial state the system must settle into one of two states

� The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

� Finally, we need to be able to flip the switch by external inputs

� “Population” Switches
� Populations of identical agents (molecules) with the whole population

switching from one state to another as a whole

� Highly concurrent (stochastic)

5

A Bad Algorithm
� Direct Competition

� x catalyzes the transformation of y into x

� y catalyzes the transformation of x into y

� when all-x or all-y, it stops

� This system has two end states, but
� Convergence to an end state is slow (a random walk)

� Any perturbation of an end state can start a random
walk to the other end state (hence not really bistable)

6

y + x → x + x
x + y → y + y

A Very Good Algorithm
� Approximate Majority (AM)

� Decide which of two populations is in majority

� A fundamental ‘population protocol’
� Agents in a population start in state x or state y

� A pair of agents is chosen randomly at each step,
they interact (‘collide’) and change state

� The whole population must eventually agree on a
majority value (all-x or all-y) with probability 1

7

Third ‘undecided’ state

1) Disagreements cause agents to
become undecided

2) Undecided agents believe any
non-undecided agent they meet

Properties
� With high probability, for n agents

� The total number of interactions before converging is O(n log n)

⇒ fast

� The final outcome is correct if the initial disparity is ω(sqrt(n) log n)

⇒ solution states are robust to perturbations

� Logarithmic time bound in parallel time
� Parallel time is the number of steps divided by the number of agents

� In parallel time the algorithm converges with high probability in O(log n)

8

[Angluin et al., http://www.cs.yale.edu/homes/aspnes/papers/disc2007-eisenstat-slides.pdf]

Chemical Implementation

9

x + y → y + b
y + x → x + b
b + x → x + x
b + y → y + y

Chemistry as a
programming
language for
population
algorithms!

Worse-case scenario example,
starting with x=y, b=0:Bistable

Even when x=y! (stochastically)

Fast
O(log n) convergence time

Robust to perturbation
above a threshold, initial majority wins whp

Correspondence PP ↔ (normalized)CRN
� Suppose we have a Chemical Reaction Network with:

� All the reactions are unit-rate, bimolecular, with two products: A + B �1 C + D

� At most one reaction with the same reactants.

� “Saturated” with null reactions E + F �1 E + F and G + G �1 G + G for all the other possible reactants among existing species
(these null reactions have no effect on the kinetics).

� So there is a one-to-one reaction/interaction correspondence with a Population Protocol (which also has null interactions).

� Consider the sum λ of the Gillespie propensities of all reactions in any state
� It is always the same (everything interacts with everything else at rate 1): for n molecules in volume v, λ = n(n-1)/2v *

� By Gillespie, the time to the next (possibly null) reaction is an exponential random variable with rate λ.

� There are on average 1/λ (possibly null) reactions per unit time. And since n/v (“concentration”) is assumed constant, λ is O(n).

� Transferring Population Protocols Results
� PPs measure time complexity in expected number of interactions. E.g.: AM converges in O(m log m) interactions WHP.

� But there is now a correspondence with CNR time: let E(m) be the expected number of interactions of the PP,
then E(m/λ) = E(m)/λ is the expected running time of the CRN. This can be bounded tightly with Chernoff bounds.

� For AM, E(m) is O(m log m), and λ is O(n), hence the expected running time of its CRN, E(m/λ), is logarithmic in the system size.

10

[Soloveichik., http://arxiv.org/abs/0803.1030 Appendix A.4 + personal communication]

Back to the Cell Cycle
� The AM algorithm has ideal properties for settling a

population into one of two states

� But that is not what the cell cycle uses

� Or is it?

11

Influence Network Notation
� Catalytic reaction

� ‘Double kinase-phosphatase’ motif

12

x + z → z + y

z is the catalyst

influence node catalytic node

Step 1: the AM Network

� ... not biochemically plausible

13

(x0 promotes x0)

(x2 promotes x2)

Natural Constraint #1
� Direct autocatalysis is not commonly seen in nature

14

x1 + x0 → x0 + x0

x1 + x2 → x2 + x2

Step 2: remove auto-catalysis
� Replace autocatalysis

� By mutual (simple) catalysis, introducing intermediate species z and r

� z and r need to ‘relax back’ when they are not being promoted:
s and t provide the back pressure for such relaxation

� ... still not biochemically plausible.
15

(x0 promotes r0, promotes x0)

(x2 promotes z2, promotes x2)

Natural Constraint #2
� x0 and x2 (usually two states of the same molecule)

are both active catalysts in that network

� That is not commonly seen in nature

16

vs. or

� Remove the catalytic activity of x2
� By “flipping the z feedback to the other side”

� All species now have one active (x0,z0,r0) and one inactive (x2,z2,r2) form

� This is ‘biochmically plausible’

Step 3: only one active state per species

17

(x0 promotes r0, promotes x0)

(x2 promotes z0 via s bias,
z0 promotes x2 via inhibiting x0)

Network Structure
� … and that is the cell-cycle switch!

� But did we preserve the AM function through our network transformations?

� Ideally: prove either that the networks are ‘contextually equivalent’ or that the
transformations are ‘correct’

� Practically: compare their ‘typical’ behavior
18

x0x2
t

s

z0
r0

r2

z2
Nobel-prize

winning network

Variation on a
distributed
algorithm

Convergence Analysis
� Switches as computational systems

19

DC AM SC CC

1.0

0.00355

0

0

2.0

0.00710

0

0

2.0

15

0

0.00710

← tp →0

0

↑

xp
↓

Pr(xp|tp)

1.00

15000

0

1.00

↑

xs
↓

← ts →

NEW!
CC appears to converge in log time

Start symmetrical
(x0=x1=x2 etc.)

Black lines: several stochastic simulation traces
Color: full probability distribution of small-size system

Steady State Analysis
� Switches as dynamical systems

20

↑

xp
↓

← sxp → 150
0

15

Pr(xp|sxp)

150

150
0

0

↑

xs
↓

← sxs →

DC AM SC CC

NEW!
AM shows hysteresis

Black lines: deterministic ODE bifurcation diagrams
Red lines: noisy stochastic simulations
Color: full probability distribution of small-size system

Evidence that CC is ‘similar’ to AM
� But there was a difference

� The output of CC does not go ‘fully on’ like AM:

� Because s continuously inhibits x through z, so that x cannot fully express

� Q: Why didn’t nature do better than that?
21

2.0

15

0

0.00710

← tp →0

0

↑

xp
↓

Pr(xp|tp)

CC

Nature fixed it!
� There is another known feedback loop

� By which x suppresses s “in retaliation” via the so-called Greatwall loop

� Also, s and t happen to be the same molecule

� (As usual, there are many more details in real biological networks; this is one of
the many details people knew about without fully understanding its function)

22

1.0

9

0

0.0025

← tp →0

0

↑

xp
↓

Pr(xp|tp)

15000

0

↑

xs
↓

← ts →

Full activation!

GW

More surprisingly
� Made it faster too!

� The extra feedback also speeds up the decision time of the switch,
making it about as good as the ‘optimal’ AM switch:

23

0.004← ts →0

15000

0

↑

xs
↓

AM

GW

CC

Conclusion (in our published paper):
Nature is trying as hard as it can to
implement an AM-class algorithm!

The Greatwall Kinase
� Our paper appeared:

� Suggesting GW is a better switch than CC,
also in the context of oscillators

� Another paper the same week:
� Showing experimentally that the Greatwall

loop is a necessary component of the switch,
i.e. the not-as-good-as-AM network
has been ‘refuted’

24

But what about network equivalence?
� Our evidence is empirical

� Although quantitative and covering both kinetic and steady state behavior

� Also, contextual equivalence holds in the context of oscillators (see paper)

� Analytical evidence is harder to obtain
� The proof techniques for the AM algorithm are hard and do not generalize

easily to more complex networks

� Quantitative theories of behavioral equivalence and behavioral approximation,
e.g. in process algebra, are still lacking (although rich qualitative theories exist)

25

Mutual Inhibition
� A new paper suggests that all cellular switches in all phases of the cell

cycle follow (abstractly) a mutual inhibition pattern:

26

GW

MI

In our notation:

cf.:

New Cell Cycle Network
� A new paper presents a more complete view of the cell cycle switch

� N.B. “phosphorylation network dynamics” is the same as our x0-x1-x2 motif

27

NCC

In our notation:

Network Emulation
� For chosen (uniform) initial conditions, the ODEs (and hence trajectories) of
NCC collapse to those of MI (thanks to David Soloveichik):

28

(18 species on 3 trajectories) (6 species on 3 trajectories)

x,r,p ⇢ x
s,u,z ⇢ s

NCC MI

Network Emulation
� For chosen (uniform) initial conditions, the ODEs (and hence trajectories) of MI

collapse to those of AM:

29

(6 species on 3 trajectories) (3 species on 3 trajectories)

s,x⇢ x

MI AM

Conclusions
� The cell cycle switch can exactly emulate AM

� Nature likes a good algorithm!

30

emulates: emulates:

(New) cell cycle switch
Approximate majority

algorithm

NCC

AMMI

31

en.wikipedia.org/wiki/Trammel_of_Archimedes

y2

y0

x0

x2

Cell Cycle Oscillator
� The cell cycle switch is part of an oscillator network

� The cell cycle oscillation: grow-divide-grow-divide...

� The principle of the oscillator
� Two interconnected switches yield a limit-cycle oscillator; e.g. two AM switches

� In a Trammel of Archimedes configuration (gray rates < black rates)

� (The biological network lacks some of these links and still oscillates)

32

y2 y0

x0 x2

In separate work...
� We have a chemical implementation of AM using DNA gates

� I.e., a ‘synthetic reimplementation’ of the central cell-cycle switch.

33

Collapse in detail

34

AM

dx0/dt = x0*x1 - x0*x2

dx1/dt = x0*x2 + x2*x0 - x1*x0 - x1*x2

dx2/dt = x1*x2 - x2*x0

xtot = x0+x1+x2

MI

dz0/dt = z1*z0 - z0*y0

dz1/dt = z2*z0 + z0*y0 - z1*z0 - z1*y0

dz2/dt = z1*y0 - z2*z0

dy0/dt = y1*y0 - y0*z0

dy1/dt = y0*z0 + y2*y0 - y1*z0 - y1*y0

dy2/dt = y1*z0 - y2*y0

ytot = y0+y1+y2

ztot = z0+z1+z2

Collapse in detail

35

MI

x0(0) = y2(0) = z0(0)

x1(0) = y1(0) = z1(0)

x2(0) = y0(0) = z2(0)

(at time 0)

AM

Collapse in detail

36

[David Soloveichik]

Assume that at some time t, in MI:

y2(t) = z0(t)

y1(t) = z1(t) (at time t)

y0(t) = z2(t)

then, e.g.:

(dy2/dt)(t)

= y1(t)*z0(t) - y2(t)*y0(t)

= z1(t)*z0(t) - z0(t)*y0(t)

= (dz0/dt)(t)

this implies that y2(t+dt) = z0(t+dt) and so on at

any future time; i.e. y2 = z0.

Similarly y1 = z1 and y0 = z2. So the trajectories of

MI overlap in pairs.

Now assume at some time t in AM and MI:

x0(t) = y2(t) = z0(t)

x1(t) = y1(t) = z1(t) (at time t)

x2(t) = y0(t) = z2(t)

we again have that, e.g.:

(dx0/dt)(t)

= x0(t)*x1(t) - x0(t)*x2(t)

= z0(t)*z1(t) - z0(t)*y0(t)

= (dz0/dt)(t)

so x0 = z0 (= y2) at any future time,

and similarly x1 = z1 (= y1) and x2 = z2 (= y0)

And if we start with initial conditions satisfying:

x0(0) = y2(0) = z0(0)

x1(0) = y1(0) = z1(0) (at time 0)

x2(0) = y0(0) = z2(0)

then we have the same time evolution for AM and MI.

37

Question (Cris Moore)
� Is it true that any trajectory of the ‘bigger’ system

converges to a trajectory of the ‘smaller’ system?
� This is more than ability to simulate or approximate the smaller system.

(We already know from the ODEs that the bigger system can in fact simulate
the small one exactly.)

� If the above is true, it further means that the bigger system, even though it has
a richer state space and many more trajectories, cannot in fact “stay away” from
the behavior of the smaller systems, even if it starts in a state that is not
representable in the smaller system.

� “Hi Luca. I have been trying to wrestle with the 18-dimensional (actually 12-dimensional)
system all at once. Establishing linear stability of the manifold equivalent to AM seems
fairly easy, but I want to show it's globally stable, at least over a large range of initial
conditions. Just wanted to let you know. - Cris” [Last I heard.]

38

©2013 Microsoft Corporation. All rights reserved.

