Microsoft”
Research

The Cell Cycle Switch Computes
Approximate Majority

Microsoft Research

—
~

Luca Cardel

Joint work with Attila Csikasz-Nagy, CoSBi & King's College London

Aalborg, 2013-08-07




Calbiochem’ MAPK Family Pathways

Cells Compute

» No survival without computation!
- Finding food
- Avoiding predators

- How do they compute?
. "e . . " ¥
- Clearly doing “information processing MAPKKK <% MAPKKK"
. . . +
- Based on complex, higher-order interactions £2 |
: MAPKKK = MAP K|nase K|nase K|nase = MAPKK T_> MAPKK-P 7> MAPKK-PP
that which operates on that which operates on 1
that which operates on protein. MAPKK Prase
1 . 4t / . MAPK 5= MAPK-P 5= MAPK-PP
- How ‘sophisticated’ are natural algorithms? T ; ‘
MAPK Pase
Ultrasensitivity in the mitogen-activated protein cascade, Chi-Ying F. Huang QuUTPUT
and James E. Ferrell, Jr,, 1996, Proc._ Natl Acad. Sci USA, 93, 10078-10083.




Outline

- Analyzing biomolecular networks

- Try do understand the function of a network
- But also try to understand its structure, and what determines it

- The Cell-Cycle Switches

- Some of the best studied molecular networks

- Important because of their fundamental function (cell division)
and the stability of the network across evolution

- We ask:

- What does the cell cycles switch compute?
+ How does it compute it?




ne Cell Cycle Switch

'his network is universal in all Eukaryotes [P Nurse]

- lL.e.,, the network at the core of cell division is the same from yeast to us
- Not the components of the network, nor the rates

11 Science 106, 1153-1168 (
in © The Compan: iologi

Numerical analysis of a comprehensive model of M-phase control in

unreplicated Xenopus oocyte extracts and intact embryos
DNA
Bela Novak* and John J. Tysont
Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060-0406, USA
G 5 g - 0 3 of ical University of Budapest, 1521 Budapest Gellert Ter 4, Hungary
ore MPF Double positive feedback on x
ey Double negative feedback on x
_— No feedback ony

What on earth ... ??7?

- The function is very well-studied. But why this structure?
- l.e., why this algorithm?




How to Build a Good Switch
- What is a "good” switch?

- We need first a bistable system: one that has two distinct and stable states.
l.e., given any initial state the system must settle into one of two states

- The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

- Finally, we need to be able to flip the switch by external inputs

"Population” Switches

- Populations of identical agents (molecules) with the whole population
switching from one state to another as a whole

- Highly concurrent (stochastic)




A Bad Algorithm [

—_—
X —y

- Direct Competition | T
- X catalyzes the transformation of y into x
-y catalyzes the transformation of x into y
- when all-x or all-y, it stops

- This system has two end states, but

- Convergence to an end state is slow (a random walk)

- Any perturbation of an end state can start a random
walk to the other end state (hence not really bistable)

Yy + X=X+ X
X+ty—=Yy+y
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Dana Angluin « James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust
Approximate Majority

We analyze the behavior of the following population pro-

. . . tocol with states @ = {b, }[Ill:::l:tr{‘"’:I:ILIH.(RIS;:I:I
° ApprOX| mate M a-JOrlty (AM) -]‘:Il'}:le EI:‘\\M};II;(”IHiv:\:5:;1::(“1“ : 1 col
‘ I 1 M M . . T b v
- Decide which of two populations is in majority e

b (b,x) (b,b) (b, y)
y (b)) (w.y) (w.y)

- A fundamental ‘population protocol’

- Agents in a population start in state x or state y C y !C y ,_,C
- A pair of agents is chosen randomly at each step, x x

they interact (‘collide’) and change state Third ‘undecided’ state
- The whole population must eventually agree on a
majority value (all-x or all-y) with probability 1 1) Disagreements cause agents to

become undecided
2) Undecided agents believe any
non-undecided agent they meet




P ro pe rtl e S [Angluin et al., http://www.cs.yale.edu/homes/aspnes/papers/disc2007-eisenstat-slides.pdf]
- With high probability, for n agents

- The total number of interactions before converging is O(n log n)
— fast

- The final outcome is correct if the initial disparity is w(sgrt(n) log n)
= solution states are robust to perturbations

- Logarithmic time bound in parallel time

- Parallel time is the number of steps divided by the number of agents
- In parallel time the algorithm converges with high probability in O(log n)




Chemical Implementation

Chemistry as a X+y—y+b

programming y+X—->x+b
language for b+ N

population X=X+ X
algorithms! b+y—-y+y
Bistable

Even when x=y! (stochastically)

1

Fast
O(log n) convergence time

1

Robust to perturbation
above a threshold, initial majority wins whp
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Worse-case scenario example,
starting with x=y, b=0:
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Correspondence PP < (nomaizedf CRN

[Soloveichik., http://arxiv.org/abs/0803.1030 Appendix A.4 + personal communication]
Suppose we have a Chemical Reaction Network with:

All the reactions are unit-rate, bimolecular, with two products: A+ B>"C+ D
At most one reaction with the same reactants.

“Saturated” with null reactions E + F >TE + Fand G + G ' G + G for all the other possible reactants among existing species
(these null reactions have no effect on the kinetics).

So there is a one-to-one reaction/interaction correspondence with a Population Protocol (which also has null interactions).

Consider the sum A of the Gillespie propensities of all reactions in any state
It is always the same (everything interacts with everything else at rate 1): for n molecules in volume v, A =n(n-1)/2v"
By Gillespie, the time to the next (possibly null) reaction is an exponential random variable with rate A.
There are on average 1/A (possibly null) reactions per unit time. And since n/v (“concentration”) is assumed constant, A is O(n).

Transferrmg Population Protocols Results

PPs measure time complexity in expected number of interactions. E.g.. AM converges in O(m log m) interactions WHP.

But there is now a correspondence with CNR time: let E(m) be the expected number of interactions of the PP,
then E(m/A) = E(m)/A is the expected running time of the CRN. This can be bounded tightly with Chernoff bounds.

For AM, E(m) is O(m log m), and A is O(n), hence the expected running time of its CRN, E(m/A), is logarithmic in the system size.

*Just to confirm, spllttlng the reactions between the same species and between different species, the sum
of the propensities is 3, &l 4 5~ Tl L(S gy N 2y 4230, 2iTy) = 5 (i o TiTar —
Simi) = ”(;‘L 1) using the fact that 23", ., zizy = }:i#, xix; and . xiwi + Zi#i, TiTi = Zi_,i* TiTir.
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Back to the Cell Cycle

- The AM algorithm has ideal properties for settling a
population into one of two states

- But that is not what the cell cycle uses
- Or s it?




Influence Network Notation

- Catalytic reaction T z z zis the catalyst
y L XLZ»V

X—y — X+Z—>7Z+Yy

- '‘Double kinase-phosphatase” motif

middle state
inhibit x i (ensures nonlinearity)
(promote x,) T

-— X ¥ =
P
promote x | . \
(promote X)
Xo X5 state where state where
output output X is promoted X is inhibited

influence node catalytic node

12




Step 1. the AM Network

[T

l
T

- ... not biochemically plausible

R T
_g —_— XO,‘_X],‘_XE

(X, promotes Xx,)

(Xo promotes x;)




Natural Constraint #1

- Direct autocatalysis is not commonly seen in nature

X1 + Xg = Xg + X
X1 + X5 = X5 + X,

)BE%(




Step 2: remove auto-catalysis

- Replace autocatalysis

- By mutual (simple) catalysis, introducing intermediate species zand r

- zand r need to 'relax back’ when they are not being promoted:
s and t provide the back pressure for such relaxation

S
|
].:l _r* j (X, promotes z,, promotes x,)
i

X
D (Xg promotes ry, promotes x,)

T

t
- ... still not biochemically plausible.

15




Natural Constraint #2

+ Xo and X, (usually two states of the same molecule)
are both active catalysts in that network

- That is not commonly seen in nature

— X —
1

|
}(X VS. ' or

16




Step 3: only one active state per species

- Remove the catalytic activity of x,
- By “flipping the z feedback to the other side”

N @&— N

(x, promotes z, via s bias,

.|.—* » T _.I. Z, promotes x, via inhibiting x,)
[ 5 X B

1 : ! (X, promotes r,, promotes x,)

t

- All species now have one active (x,,z,r,) and one inactive (x,,z,,I,) form
+ This is ‘biochmically plausible’

17




Network Structure

- ....and that is the cell-cycle switch!

S

Nobel-prize l
winning network ~ __I_
— X

®
Variation on a r —T

distributed
algorithm t

- But did we preserve the AM function through our network transformations?

- Ideally: prove either that the networks are ‘contextually equivalent’ or that the
transformations are ‘correct’

- Practically: compare their ‘typical’ behavior




Convergence Analysis

- Switches as computational systems

| |
$ J-—)I-Z Z__I_
o, N
il i x} =
D { .'II[: ccC

— t 0.00355 0 0.00710 0 0.00710

) 15000 § 2 15
Start symmetrical roxlt,
(Xo=X{=X, etc.) -

Black lines: several stochastlc simulation traces
Color: full probability distribution of small-size system

NEW!
CC appears to converge in log time
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Steady State Analysis

+ Switches as dynamical systems

bias bias 1 i

O =
LT Lt ! r
SX SX I |

15
| Prix|sx,)

. 10°
- 10
. 10°
0.01
01
-

0 csx,» 150 | 0 - sx, - 1

Black lines: deterministic ODE bifurcation diagrams NEW!
Red lines: noisy stochastic simulations AM shows hysteresis
Color: full probability distribution of small-size system
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Fvidence that CC is 'similar’ to AM

- But there was a difference
- The output of CC does not go ‘fully on’ like AM:

0.00710

0

i N @— N

L

- Because s continuously inhibits x through z, so that x cannot fully express
- Q: Why didn’t nature do better than that?

21




Nature fixed it!

- o

‘here is another known feedback loop

- By which x suppresses s “in retaliation” via the so-called Greatwall loop
- Also, s and t happen to be the same molecule

[
S /‘ T_>l< x.
vl \

—t, > 0.0025

.| Full activation!

- (As usual, there are many more details in real biological networks; this is one of
the many details people knew about without fully understanding its function)

22




More surprisingly

- Made it faster too!

- The extra feedback also speeds up the decision time of the switch,
making it about as good as the ‘optimal’ AM switch:

15000

Conclusion (in our published paper): .
Nature is trying as hard as it can to T
implement an AM-class algorithm!

AM
GW
CcC

—
0.004

23




The Greatwall Kinase
- Our paper appeared:

- Suggesting GW is a better switch than CC,
also in the context of oscillators

- Another paper the same week:

- Showing experimentally that the Greatwall
loop is a necessary component of the switch
l.e. the not-as-good-as-AM network
has been 'refuted’

I

SCIENTIFIC 02 ¢
REPLIRTS net

@ The Cell Cycle Switch Computes
Approximate Majority

SUBJECT AREAS:
Lwea Cardelli' & Attila Csikasz-Nagy™*
COMPUTATIONAL

BIOLOGY

— N
nature \ ———————— @
COMMUNICATIONS

ARTICLE
RgpeE3 Jul 2012 | Accepted 14 Aug 2012 | Published 1 Sep 2012 [ botz10.30282 2062 |

Greatwall kinase and cyclin B-Cdk1 are both critical
constituents of M-phase-promoting factor

MasatoshiHara'!, Yusuke Abe't, Toshiaki Tanaka?, Takayoshi Yamamato!, Eiichi Okumura' & Takeo Kishimoto!
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But what about network equivalence?

- Our evidence is empirical

- Although quantitative and covering both kinetic and steady state behavior
- Also, contextual equivalence holds in the context of oscillators (see paper)

- Analytical evidence is harder to obtain

- The proof techniques for the AM algorithm are hard and do not generalize
easily to more complex networks

- Quantitative theories of behavioral equivalence and behavioral approximation,
e.g. in process algebra, are still lacking (although rich qualitative theories exist)

25




Mutual Inhibition

- A new paper suggests that all cellular switches in all phases of the cell
cycle follow (abstractly) a mutual inhibition pattern:

Molecular mechanisms creating bistable switches at cell cycle | n O u n Otat| O N :
transitions

Anael Verdugo, P. K. Vinod, John J. Tyson and Bela Novak
Open Biol. 2013 3, 120179, published 13 March 2013

Y
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New Cell Cycle Network

- A new paper presents a more complete view of the cell cycle switch

N.B. “phosphorylation network dynamics” is the same as our x,-x;-x, motif

Phosphorylation network dynamics in the control of
cell cycle transitions

.
Danlel Fisher'", Lillana Krasinska'*, Damien Coudre d Béla Novak™* I n O u r n Otatl O n °
“nsﬂl ier, IGMM, CNRS UMR 553 Uni té Montpellier | and I, 34293 Montpeliier, France .
“ \nce

“Oxor

s,
. Department of Biochemistry, umvers of Oxford, South Parks Road, Oxford OX1 3QU, UK

A\ LT MY
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u\ree'l‘;——:?eﬂ |f- Cd""*;\ Cdci‘ﬁ; \Cdd.ﬁ —T
N\ Soaas AN L/ NcC
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Network Emulation

- For chosen (uniform) initial conditions, the ODEs (and hence trajectories) of

NCC collapse to those of Ml (thanks to David Soloveichik):

/1
l_/T_l

(18 species on 3 trajectories)

X,hLp = X Is | xl

S,U,z->S

(6 species on 3 trajectories)

28




Network Emulation

For chosen (uniform) initial conditions, the ODEs (and hence trajectories) of Ml
collapse to those of AM:

AM

(6 species on 3 trajectories) (3 species on 3 trajectories)

29




Conclusions

- The cell cycle switch can exactly emulate AM

l_ _l T 1
.I. / T emulates: S X emulates: )1:—|
LIV T [+ K]
L/ mi AM
nee Approximate majority
(New) cell cycle switch algorithm

- Nature likes a good algorithm!

30







Cell Cycle Osci

- The cell cycle switc

lator

N is part of an oscillator network

- The cell cycle oscillation: grow-divide-grow-divide...

- The principle of the oscillator

- Two interconnected switches yield a limit-cycle oscillator; e.g. two AM switches
- In a Trammel of Archimedes configuration (gray rates < black rates)
- (The biological network lacks some of these links and still oscillates)

L1

B

=l

" Yo l

Yo [ ?_l

Xo

en.wikipedia.org/wiki/Trammel_of_Archimedes
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In separate work...

- We have a chemical implementation of AM using DNA gates
- l.e., a 'synthetic reimplementation’ of the central cell-cycle switch.

Programmable chemical controllers made from DNA

Yuan-lyue Chen’, Neil Dalchau’, Niranjan Srinivas®, Andrew Phillips’, Luca Cardelli’, David Soloveichik®,

and Georg Seelig*®

! Department of Electrical Engineering, University of Washington, Seattle

? Microsoft Research, Cambridge (UK)

* Computation and Neural Systems, California Institute of Technology, Pasadena

* Center for Systems and Synthetic Biology, University of California, San Francisco

3 Department of Computer Science & Engineering, University of Washington, Seattle
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Collapse in detall

X0t X e—n
| ! |_ y y

AM

— * *
dxo/dt = Xg*X; - X5 *X,
— * * * *
dx,/dt = Xg*X, + X, %Xg - X, ¥Xg - X, *X,
— * *
dx,/dt = x;*X, - X, *Xg

Xiot = XXX,

L ] L ]
Y2« Y1« Yo —
L ] »
i [t
MI "h 'h.
— 7 L . L
ﬂ*ﬂ'.— 11'.— Z

dz,/dt =2,%2y + 2™y, - 2,%24 - 2,*Yq
dz,/dt = z,*y, - z,*z,

dyo/dt =y, *y - Yo * 20
dy,/dt =y 25+ y,*Yo - V1*20 - V1 *Yo
dy,/dt =y,*z, - y,*y,

Yiot = YotY11Y2
Ziot = ZotZy12Z,
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Collapse in detall

| ? X Xy Xz:]

f— | f—

AM

Y2« V1< Yo
[y
Mi > N
P 21 & Z;

Xo(o) = yz(o) = Zo(o)
x,(0) =y,(0) = z,(0)
X,(0) =y,(0) = z,(0)

(at time 0)

35




Collapse in detall

[David Soloveichik]
Assume that at some time t, in Ml:

Y,(t) = z,(t)
ya(t) = z,(t) (at time t)

Yolt) = 2,(t)

then, e.g.:
(dy,/dt)(t)
= y1(t)*Zo(t) - y,(t)*y,(t)
= 7,(1)*z4(t) - Zo(t)*y,(t)
= (dzy/dt)(t)

this implies that y,(t+dt) = z,(t+dt) and so on at
any future time; i.e. y, = z,,.

Similarly y, =z, and y, = z,. So the trajectories of
Ml overlap in pairs.

Now assume at some time tin AM and MI:

Xo(t) = y,(t) = z,(t)
x,(t) = y,(t) = z,(t) (at time t)

X,(t) = yolt) = z,(t)

we again have that, e.g.:

(dx,/dt)(t)

= Xo(t)*x,(t) - Xo(t)*x,(t)
= Zo(t)* 2, (t) - Zo(t)*y,(t)
= (dzy/dt)(t)

SO X, = Z, (= y,) at any future time,
and similarly x; =z, (=y,) and x, =z, (= y,)

And if we start with initial conditions satisfying:

%0(0) = y,(0) = z,(0)
x,(0) = y,(0) = 2,(0) (at time 0)

X(0) = y5(0) = 2,(0)

then we have the same time evolution for AM and MI.

36
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Question (Cris Moore)

converges to a trajectory of the ‘smaller’ system?

- This is more than ability to simulate or approximate the smaller system.
(We already know from the ODEs that the bigger system can in fact simulate
the small one exactly.)

- If the above is true, it further means that the bigger system, even though it has
a richer state space and many more trajectories, cannot in fact “stay away” from
the behavior of the smaller systems, even if it starts in a state that is not
representable in the smaller system.

- "Hi Luca. | have been trying to wrestle with the 18-dimensional (actually 12-dimensional)
system all at once. Establishing linear stability of the manifold equivalent to AM seems
fairly easy, but | want to show it's globally stable, at least over a large range of initial

conditions. Just wanted to let you know. - Cris” [Last | heard.]
38
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